Thursday, December 14, 2017

Update on the State of Chesapeake Bay

On December 5th 2017 Joe Wood of the Chesapeake Bay Foundation presented a progress report update on the health of the Chesapeake Bay. The good news is that the health of the Chesapeake Bay is improving in real life not just according to the model of the Chesapeake Bay that is used to manage the States’ progress at reducing the nitrogen, phosphorus and sediment pollution that is released into the Bay.

Overall, there has been a reduction in the volume of the annual Dead Zone and it is continuing to decline. Toxic algae growth has been reduced and water clarity is improving. The health of the Bay is still far from good, but the U.S. EPA sees improvement and feels that the Bay is just on the cusp of major progress in the health of the Chesapeake Bay.

We have now reached the mid-point in the pollution reduction plans for Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia. All the states are being assessed in their progress toward meeting the nutrient and sediment pollutant load reductions mandated by the U.S. EPA. Using the Chesapeake Bay model, this midpoint assessment measures the states’ progress towards meeting the 2017 goal of having practices in place to achieve 60% of the pollution reductions from the 2009 levels.

The intent of the midpoint assessment is allow the states to make changes in their state programs and plans and develop the Phase III Watershed Implementation Plans (WIPs) that will allow them to meet the 2025 Chesapeake Bay restoration goals assigned to them by the U.S. EPA.

In Virginia, due to the significant reductions in agricultural runoff of nitrogen and phosphorus and waste water treatment plants improvements and upgrades we have exceeded our goals for 2017 in nitrogen and phosphorus reductions. However, we have failed to meet our sediment goals. As you can see below sediment released from agriculture and waste water treatment plants has been reduced while sediment released from stormwater management has increased. 


Moving forward, U.S. EPA / the Chesapeake Bay Foundation recommend that Virginia target stormwater and agriculture for additional reductions to meet the 2025 goals. In Virginia they recommend increased funding to the Virginia Agriculture Cost Share program (VACS) and the Virginia Conservation Assistance Program (VCAP). These are cost-share programs that provide financial incentives for property owners to implement practices that reduce runoff of sediment and nutrient pollution on agricultural properties (VACS) and urban properties (VCAP).

Monday, December 11, 2017

Dominion's Alternative for Disposing of Coal Ash


If you recall, last year the Virginia’s General Assembly passed a bill that required Dominion Power to study and report on the costs and benefits, risks and recycling options for the 30million tons of coal ash now stored in lagoons at the company’s power plants- including the Possum Point Power Station in Prince William County, , Bremo, Chesterfield and Chesapeake ponds. This coal ash is a waste product from generations of burning coal at those power plants.

Virginia Governor Terry McAuliffe amended the bill to include a moratorium until 2018 on any new permits for coal ash disposal until a study of its risks and possible alternatives for coal ash disposal could be completed. Well, the study is done.

On December 1, 2017 the massive report prepared by AECOM, an engineering firm, was presented to the State Water Commission. The report acknowledges that common metals found in coal ash were detected above EPA standards in groundwater monitoring wells at all four sites. These coal ash ponds have been open to the elements and taking on water for decades. The trace contaminants and metals in the coal ash are probably the source of the metal contaminants found in the groundwater.

The AECOM report examines the expenses and time frames for the three methods of disposal or recycling the coal ash: recycling for use in concrete, cinder block or wallboard; hauling it to a modern, lined landfill by truck, barge or rail; and Dominion’s original plan of consolidating all of the on-site coal ash into one impoundment , dewatering and closing in place.

The new EPA regulations for new coal ash disposal requires that coal ash disposal site must have protective liners to prevent groundwater contamination. The rule also requires companies to conduct monitoring of disposal sites, clean up any existing contamination, and close and remediate unlined disposal sites that have polluted groundwater. Finally, monitoring data, corrective action reports, and other important information about the site must be made available to the public. These regulations are similar in may way to the modern landfill regulations on which they were based.

The expenses cited in the report are very high. Closing the ash ponds just at the Bremo Power Station in Fluvanna County, for example, by removing the ash from the north bank of the James River to an offsite landfill by truck was estimated to take upto 13 years and cost $1 billion. Transporting the coal as by rail was estimated to take 10 years and cost $1.53 billion. Recycling the more than 6.2 million tons of coal ash at Bremo Power Station could take as long as 27 years and cost between $593 million to $1.3 billion. Finally, consolidating and capping the coal ash onsite, with “potential groundwater corrective measures,” would take 3-5 years and cost $98 to $173 million according to the report summary. Proportional costs and time frames were identified for the other Dominion coal ash sites.

Recycling the coal ash is the option favored by the Southern Environmental Law Center. In a separate report they estimate the time and costs as lower. For Possum Point the next best option is closing the coal ash on site because when properly done it requires ongoing monitoring and maintenance that is best accomplished at an operating and regulated plant rather than at a remote cap and leave it location. All physical barriers fail over time this is addressed by monitoring and maintaining the systems and Possum Point is downstream from most drinking water supplies.

It is unclear how the State Water Commission will react to the information provided in the AECOM report or the separate Southern Environmental Law Center report. It remains to be seen if this information will alter Dominion’s plans for the coal ash disposal. Environmental groups including the Riverkeepers, some local governments, adjacent residents and sine state lawmakers argue capping in place without a proper liner to the ponds would allow heavy metals to leach into groundwater and surface waterways for decades.

Thursday, December 7, 2017

Report Water Main Breaks to Fairfax Water

Winter is coming and with it broken water mains. Temperatures going from freezing to simply cool can cause water mains to expand and contract, putting stress on vulnerable areas. This stress can cause water main breaks that disrupt water service and traffic. You can track active water main breaks and real-time status updates using the tracking tool at Fairfax Water at this link.

Water from Fairfax Water is distributed through approximately 3,200 miles of water mains to the county’s homes and businesses. It is a lot of piping to keep track of. You can also help Fairfax Water by serving as their extra eyes. If you see water coming from the ground or street, then notify Fairfax Water by: Emailing watermainbreak@fairfaxwater.org or calling 703-698-5613, TTY 711. Though much of that distribution system in Fairfax is newer than the national average and Fairfax has a good repair and replacement strategy, they still have about 600 or so water main breaks a year and their repair crews are very busy during the winter months.

Although winter weather is often the cause of breaks this time of year, there are a number of reasons water mains break. The age of the pipe often affects its vulnerability to breaks. Changes in water pressure within the pipes, vibrations caused by construction or heavy traffic, or changes in soil conditions caused by erosion or flooding can all lead to water main breaks.

In an emergency, having a supply of clean water is essential and should be part of a winter emergency kit. If there is a water main break or power outage (pumps are necessary to move the water through the piping system) you could have your water supply disrupted. Now is a good time to store emergency water:
  • Store at least one gallon of water per person per day for a minimum three-day supply. Be sure to account for pets; dogs and cats typically need one gallon each per day. 
  • Store water in a cool, dark place in your home. Replace water every six months and be sure to check expiration dates on store-bought water.
  • Use of food-grade water storage containers, such as those found at surplus or camping-supply stores, is recommended if you prepare stored water yourself. Be sure to disinfect the storage containers first. 
  • In case of a blizzard you might also want to store extra food in the winter so that you can wait until the roads are clear to go out.

Monday, December 4, 2017

Scientists Predict Rain Storm Increase

A new study published late last month in the journal Nature Climate Change found that the volume of rainfall from massive storms known as mesoscale convective systems will increase by as much as 80% in the southeast by the end of this century (or whenever the temperature increase assumed in the model is reached), deluging sizable portions of states. The study builds on previous work showing that storms which have become more intense will continue to do so as the climate warms was funded by the National Science Foundation, and by the U.S. Army Corps of Engineers.

An increase in extreme precipitation is one of the expected impacts of climate change. Scientists predict that as the atmosphere warms, it will hold more water, and a wetter atmosphere can produce heavier rain. In fact, an increase in precipitation intensity has already been measured in some regions. The persistent rain storms over Houston in the wake of Hurricane Harvey were an example of an unusually powerful and long-lived mesoscale convective storm system.

These clusters of thunderstorms that can extend for many dozens of miles and last for hours or in the case of Houston days, producing flash floods, debris flows, landslides, high winds, and/or hail. The current study uses a high-resolution computer simulations of current and predicted weather, in a future with a climate that was 5 degrees Celsius (9 degrees Fahrenheit) warmer that the scientists build last year.

The increase in temperature assumed in the model is significantly higher than the “best estimate temperature” increase expected by the Intergovernmental Panel on Climate Change (IPCC). The IPCC projected temperature for seven scenarios. Across all the scenarios they found a “best estimate temperature” increase range of 0.6-4.0 degrees Celsius by the end of the century.

Nonetheless, in the new study, Prein and his co-authors focused on storms that cause major summertime flooding east of the Continental Divide. They investigated not only how their rainfall intensity will change in a future climate that was 5 degrees Celsius, but also how their size, movement, and rainfall volume may evolve.

Dr. Prein and his co-authors looked at how storms that occurred between 2000 and 2013 might change if they occurred instead in a climate that was 5 degrees Celsius (9 degrees Fahrenheit) warmer. They found, for example, that intense mesoscale convective systems (MCSs) storms over an area the size of New York City could drop 60% more rain than a severe present-day system.

"This is a warning signal that says the floods of the future are likely to be much greater than what our current infrastructure is designed for," Dr. Prein said in a news release. "If you have a slow-moving storm system that aligns over a densely populated area, the result can be devastating, as could be seen in the impact of Hurricane Harvey on Houston."

Dr. Prein cautioned that this approach is a simplified way of comparing present and future climate. It doesn't reflect possible changes to storm tracks or weather systems associated with climate change and only looks at a future where the temperature increase is 5 degrees Celsius. The advantage, however, is that scientists can more easily isolate the impact of additional heat and associated moisture on future storm formation.
 
The assumptions may be aggressive, but the message you should take away is that as a nation our infrastructure has not only been inadequately maintained, but it was simply not designed for the kind of massive rain storm volume that the scientists are projecting. We need to be ready for what the future brings. 

Title: Increased rainfall volume from future convective storms in the US
Authors: Andreas F Prein, Changhai Liu, Kyoko Ikeda, Stanley B Trier, Roy M Rasmussen, Greg J Holland, Martyn P Clark
Journal: Nature Climate Change

Thursday, November 30, 2017

EU Votes to Renew Roundup License for 5 Years

On Monday representatives of the 28 European Union Countries voted to extend the license of the weed-killer glyphosate for the next five years. Glyphosate (N-phosphonomethylglycine), the active ingredient in the herbicide Roundup  is manufactured by Monsanto (though the formulation is no longer under patent) and is the most popular herbicide in use today in the United States, and the European Union.

The news release issued by the European Union’s Brussels office stated that 18 countries had backed its proposal to renew the chemical’s license. Nine countries voted against and Portugal abstained, giving a “positive opinion” by the narrowest possible margin under rules requiring both a majority of countries but also the countries representing a majority of the European Union’s 500 million citizens.

The final vote came after two years of wrestling with the issue among the 28 member states in Brussels. Germany had abstained in previous votes, but finally backed a European Commission proposal supported by Spain and the still member United Kingdom against the wishes of France.

Glyphosate was labeled a probable carcinogen by the International Agency for Research on Cancer, IARC, which is the cancer research arm of the World Health Organization, which two yeas ago labeled five insect and weed killers including glyphosate potential carcinogens. It based its finding on “limited evidence” of carcinogenicity in humans and “sufficient evidence” in experimental animals. It said, among other things, that there was a “positive association” between glyphosate and blood cancers.

However, Aaron Blair, the epidemiologist from the U.S. National Cancer Institute who chaired the meeting that found glyphosate a potential carcinogen had seen important unpublished scientific data from research showing no evidence of a link between glyphosate and cancer. According to Reuters new service in a sworn deposition given in March of 2017 Aaron Blair said that the data if reported to the IARC would have altered their analysis and made it less likely that glyphosate would meet the agency’s criteria for being classed as “probably carcinogenic.”

Reuters reviewed court documents from an ongoing U.S. legal case against Monsanto and spoke to both Monsanto representatives, representative from the U.S. National Cancer Institute and Aaron Blair and reported: that Monsanto representatives told Reuters reporters that “the data was deliberately concealed by Blair, but provided no specific evidence of it being hidden.”

Aaron Blair “told Reuters the data, which was available two years before IARC assessed glyphosate, was not published in time because "there was too much to fit into one scientific paper. "

Monday, November 27, 2017

Most of our Water Footprint is in Food

The water we use is our water footprint. When we think about our use of water, we think of our domestic use of water in our homes for drinking, food preparation, washing clothes and dishes, bathing , and flushing toilets, watering lawns and gardens or maintaining pools, ponds, hosing off patios and decks, washing cars and similar activities. However, most of our water footprint is the “virtual water” used to produce the food we eat, the products we buy and the energy we use.

Mankind uses a lot of water. According to a group of researchers in the Netherlands who have been studying, quantifying and mapping national water footprints since the beginning of this century, mankind uses 9,087 billion cubic meters of water each year. Most of the water use occurs in agricultural production an estimated 92% when utilization of rainwater is counted.

The first global study on the water footprints of nations was carried out by Hoekstra and Hung in 2002 and Hoekstra and Chapagain continued to refine the methods of assessing national water footprints with a series of studies in the following decade culminating in the “The Water Footprint Assessment Manual” by Arjen Y. Hoekstra, Ashok K. Chapagain, Maite M. Aldaya and Mesfin M. Mekonnen.

According to their methodology a water footprint has three components: green, blue and grey. The blue water footprint refers to consumption of fresh water resources (surface and ground water). The green water footprint is the amount of rainwater consumed, which is particularly relevant in crop production. The grey water footprint is an indicator of the degree of freshwater pollution and is defined as the volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards.

In a study published in 2011 Drs. Hoekstra and Mekonnen determined that China, India and the United States are the countries with the largest total water footprints within their territory, with total water footprints of 1,207, 1,182 and 1,053 billion cubic meters of water per year, respectively. The researchers estimated that these countries account for 38% of water footprint of global production.

India is the country with the largest blue water footprint within its territory: 243 billion cubic meters per year. Irrigation of wheat is the process that takes the largest share (33%) in India’s blue water footprint, followed by irrigation of rice (24%) and irrigation of sugarcane (16%). China is the country with the largest grey water footprint within its borders: 360 billion cubic meters per year, which is 26% of the global grey water footprint.

The water footprint of the average global citizen was 1,385 m3/year. The average consumer in the United States has a water footprint of 2,842 m3/year, while the average citizens in China and India have water footprints of 1,071 m3/year and 1,089 m3/year respectively. Remember that the largest component of the water footprint of mankind is agriculture. According to the 2011 Hoekstra and Mekonnen study, cereal products account for the largest portion of the water footprint of the average global citizen (27%), followed by meat (22%) and milk products (7%).

Monday, November 20, 2017

The Wells of Fairfax County 2017

As part of the Virginia Household Water Quality Program Fairfax County Extension held a drinking water clinic for well owners this year. The samples were taken Ocotober 18th 2017 and analyzed for: iron, manganese, nitrate, lead, arsenic, fluoride, sulfate, pH, total dissolved solids, hardness, sodium, copper, total coliform bacteria and E. Coli bacteria at a cost of $55 to the well owner.
What is tested for are mostly the naturally occurring contaminants and common sources of contamination: a poorly sealed well or a nearby leaking septic system, or indications of plumbing system corrosion. Though this is not an exhaustive list of potential contaminants, these are the most common contaminants that effect drinking water wells. The chart below shows what was found in the 75 samples tested in Fairfax County in 2017.

In order to determine if treatment is necessary, water test results should be compared to a standard. The standard we use is the U.S.EPA Safe Drinking Water Act (SDW) limits. Though private wells do not fall under the regulatory authority of the U.S. Environmental Protection Agency (EPA) or the Safe Drinking Water Act, the SDW act has primary and secondary drinking water standards that we use for comparison. Primary standards are ones that can impact health and from the tested substances include: coliform bacteria, E. coli bacteria, nitrate, lead, and arsenic. Secondary standards impact taste or the perceived quality of the water.

The 2017 Fairfax County water clinic found that over 37% of the wells tested present for coliform bacteria. Coliform bacteria are not a health threat itself, it is used to indicate other bacteria that may be present and identify that a well is not properly sealed from surface bacteria. The federal standard for coliform bacteria is zero, but the federal standard allows that up to 5% of samples can test positive for coliform during a month.

Twoof the homes tested positive for E coli. Fecal coliform and E. coli are bacteria whose presence indicates that the water is contaminated with human or animal wastes. Disease-causing microbes (pathogens) in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms. These pathogens may pose a special health risk for infants, young children, and those with compromised immune systems. However, people can drink water contaminated with fecal bacteria and not notice.

If your water is contaminated with coliform but not fecal coliform or E. coli, then you have a nuisance bacteria problem and the source may be infiltration from the surface from rain or snow melt. Typical causes are improperly sealed well cap, failed grouting or surface drainage to the well. Shock chlorinate the well, repack the soil around the well pipe to flow away from the well and replace the well cap. Then after the next big rainstorm retest the well for coliform. If it is still present then a long-term treatment should be implemented: using UV light, ozonation, or chlorine for continuous disinfection. These systems can cost up to $2,000 installed.

If you have fecal coliform in the well or E. coli, your well is being impacted by human or animal waste and you are drinking dilute sewage. If there is not a nearby animal waste composting facility, then you are probably drinking water from a failed septic system- yours or your nearest neighbors. To solve this problem you need to fix or replace the septic system that is causing the contamination, replace the well or install a disinfection and filtration system. Disinfection does not kill Giardia or Cryptosporidium, two microscopic parasites that can be found in groundwater that has been impacted by surface water or sewage. Both parasites produce cysts that cause illness and sometimes death.

Membrane filtration is the usual treatment for these parasites- a one micron membrane is required after disinfection and can be accomplished at home with a reverse osmosis system. The failing septic systems can often be identified by using tracer dyes. While continuous disinfection will work to protect you from fecal bacteria and E. coli, be aware that if your well is being impacted by a septic system, then the well water might also have present traces of all the chemicals and substances that get poured down the drain. Long term treatment for disinfection, and micro-filtration should be implemented: using UV light, ozonation, or chlorine for continuous disinfection, carbon filtration, and anything that is used for drinking should be further treated with a reverse osmosis systems or micro membrane system that works by using pressure to force water through a semi-permeable membrane. Large quantities of wastewater are produced by reverse osmosis systems and need to bypass the septic system or they will overwhelm that system creating more groundwater problems. Reverse osmosis systems produce water very slowly, a pressurized storage tank and special faucet needs to be installed so that water is available to meet the demand for drinking and cooking.

Nitrate can contaminate well water from fertilizer use; leaking from septic tanks, sewage and erosion of natural deposits. None of the wells in our group of 101 samples had nitrate levels above the MCL. The MCL for nitrate is 10 mg/L. Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill from blue-baby syndrome and, if untreated, may die. Symptoms include shortness of breath and a blue ting to the skin common in blue-baby syndrome. The NO3 dissolves and moves easily through soil which varies seasonally and over time as plants use up the nitrate over the summer. Testing in the spring will usually produce the highest levels. Nitrate may indicate contamination from septic tanks, but do not boil the water- boiling water reduces the water and actually INCREASES the concentration of nitrates. Reverse osmosis, or ion exchange is necessary to control the nitrate. None of the wells tested exceeded the MCL.

IThis year we had 9.3% of homes have first draw lead levels above the SDWA maximum contaminant level of 0.015 Mg/L. After the flushing the tap for at least one minute only one home had lead levels above the 0.15 mg/L level; however, many scientists do not believe that any level of lead is safe to drink over an extended period of time. In the homes that had elevated lead in the first draw, it tends to be negatively correlated with pH values and copper pipes. Houses built before 1988 when the ban on lead went into effect and have low pH water typically have higher lead concentrations. Lead leaches into water primarily as a result of corrosion of plumbing and well components, but can also result from flaking of scale from brass fittings and well components unrelated to corrosion and corrosion control techniques such as adjusting pH or alkalinity that are commonly used to neutralize aggressive water will not work in those cases. For most instances, though, a neutralizing filter and lead removing activated carbon filters can be used to remove lead. Recently, some home water treatment companies are offering in home treatment systems that neutralize the water and add orthophosphate other phosphate solution to coat the piping to prevent further corrosion. It should work, but I have never seen such a home system and am not aware of any testing.

Iron and manganese are naturally occurring elements commonly found in groundwater in this part of the country. 8.0% of the wells tested exceed the iron standard and 6.7% exceeded the manganese standard. At naturally occurring levels iron and manganese do not present a health hazard. However, their presence in well water can cause unpleasant taste, staining and accumulation of mineral solids that can clog water treatment equipment and plumbing and discolored water. The standard Secondary Maximum Contaminant Level (SMCL) for iron is 0.3 milligrams per liter (mg/L or ppm) and 0.05 mg/L for manganese. This level of iron and manganese can be detected by taste, smell or appearance. In addition, some types of bacteria react with soluble forms of iron and manganese and form persistent bacterial contamination in a well, water system and any treatment systems. These organisms change the iron and manganese from a soluble form into a less soluble form, thus causing precipitation and accumulation of black or reddish brown gelatinous material (slime). Masses of mucous, iron, and/or manganese can clog plumbing and water treatment equipment.

All systems of removing iron and manganese essentially involve oxidation of the soluble form or killing and removal of the iron bacteria. When the total combined iron and manganese concentration is less than 15 mg/l, an oxidizing filter is the recommended solution. An oxidizing filter supplies oxygen to convert ferrous iron into a solid form which can be filtered out of the water. Higher concentrations of iron and manganese can be treated with an aeration and filtration system. This system is not effective on water with iron/ manganese bacteria, but is very effective on soluble iron and manganese so you need to do further testing to determine what type of iron/manganese you have before you install a treatment system. Water softeners can remove low levels of iron and are widely sold for this purpose because they are very profitable, but are not recommended for just this purpose. Chemical oxidation can be used to remove high levels of dissolved or oxidized iron and manganese as well as treat the presence of iron/manganese (or even sulfur) bacteria. The system consists of a small pump that puts an oxidizing agent into the water before the pressure tank. The water will need about 20 minutes for oxidation to take place so treating before a holding tank or pressure tank is a must. After the solid particles have formed the water is filtered. The best oxidizing agents are chlorine or hydrogen peroxide. If chlorine is used, an activated carbon filter is often used to finish the water and remove the chlorine taste. The holding tank or pressure tank will have to be cleaned regularly to remove any settled particles.

The pH of water is a measure of the acidity or alkalinity. The pH is a logarithmic scale from 0 – 14 with 1 being very acidic and 14 very alkaline. Drinking water should be between 6.5 and 7.5. For reference and to put this into perspective, coffee has a pH of around 5 and salt water has a pH of around 9. Corrosive water, sometimes also called aggressive water is typically water with a low pH. (Alkaline water can also be corrosive.) Low pH water can corrode metal plumbing fixtures causing lead and copper to leach into the water and causing pitting and leaks in the plumbing system. The presence of lead or copper in water is most commonly leaching from the plumbing system rather than the groundwater. Acidic water is easily treated using an acid neutralizing filter. Typically these neutralizing filters use a granular marble, calcium carbonate or lime. If the water is very acidic a mixing tank using soda ash, sodium carbonate or sodium hydroxide can be used. The acid neutralizing filters will increase the hardness of the water because of the addition of calcium carbonate. The sodium based systems will increase the salt content in the water. Eight percent of the wells tested were found to have acidic water this year.

Water that contains high levels of dissolved minerals is commonly referred to as hard. Groundwater very slowly wears away at the rocks and minerals picking up small amounts of calcium and magnesium ions. Water containing approximately 125 mg/L can begin to have a noticeable impact and is considered hard. Concentrations above 180 mg/L are considered very hard. As the mineral level climbs, bath soap combines with the minerals and forms a pasty scum that accumulates on bathtubs and sinks. You either must use more soap and detergent in washing or use specially formulated hard water soap solutions. Hard water can be just a minor annoyance with spotting and the buildup of lime scale, but once water reaches the very hard level 180 mg/L or 10.5 grains per gallon, it can become problematic. One a well tested at 254.2 mg/L, but overall only 9.3% of homes tested had hard water. Given the number of homes with elevated sodium and our local geology, it is probably a reflection of the number of homes with water softeners.

Water softening systems are used to address the problem are basically an ion exchange system. The water softening system consists of a mineral tank and a brine tank. The water supply pipe is connected to the mineral tank so that water coming into the house must pass through the tank before it can be used. The mineral tank holds small beads of resin that have a negative electrical charge. The calcium and magnesium ions are positively charged and are attracted to the negatively charged beads. This attraction makes the minerals stick to the beads as the hard water passes through the mineral tank. Sodium is often used to charge the resin beads. Water softeners can be used to remove small amounts of other metals like iron and some forms of arsenic. As the water is softened, the sodium ions are replaced and small quantities of sodium are released into the softened water, thus the salty taste of softened water. When the water softening system is recharged the excess sodium solution carrying the calcium and magnesium is flushed to the septic system which may shorten the life of the drain field.

At the present time the EPA guidance level for sodium in drinking water is 20 mg/L. This level was developed for those restricted to a total sodium intake of 500 mg/day and does not necessarily represent a necessary level for the rest of the population. Based on taste of the water levels of sodium should be below 30 to 60 mg/L based on individual taste. Water softeners ten to cost around $4,500 installed. They are often sold to solve every water quality problem because they have some ability to remove other contaminants. The resin bed used will determine specific contaminant removal. Softened water can have a low pH and high levels of chloride, corrosion control problems and softening systems can encourage the growth of reducing bacteria. Water softening systems add sodium. Reverse osmosis systems and distillation systems remove sodium and are safe for household use, but addressing hard water by using vinegar to descale pots and dishwashers, regularly draining hot water heaters, and using detergents formulated for hard water might be a better solution for you if your water like mine is only modestly hard.

No wells were found that had arsenic exceeding the EPA MCL for drinking water of 10 ppm. While arsenic is a naturally occurring element found in soil and groundwater it is not typically found at significantly elevated levels in this geology. Arsenic can also be an indication of industrial or pesticide contamination. Arsenic can be very tricky to remove depending on its form and the other contaminants present. Possible solutions for elevated levels of naturally occurring arsenic are reverse osmosis system or iron oxide filter system.